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On the generators of a generalized numerical
semigroup

Carmelo Cisto, Gioia Failla and Rosanna Utano

Abstract

We give a characterization on the sets A ⊆ Nd such that the monoid
generated by A is a generalized numerical semigroup (GNS) in Nd. Fur-
thermore we give a procedure to compute the hole set Nd \ S, where S
is a GNS, if a finite set of generators of S is known.

1 Introduction

Let N be the set of non negative integers. A numerical semigroup is a sub-
monoid S of N such that N \ S is a finite set. The elements of H(S) = N \ S
are called the holes of S (or gaps) and the largest element in H(S) is known
as the Frobenius number of S, denoted by F (S). The number g = |H(S)| is
named the genus of S. It has been proved that every numerical semigroup S
has a unique minimal set of generators G(S), that is in S every element is a
linear combination of elements in G(S) with coefficients in N. Furthermore
the set of minimal generators of a numerical semigroup is characterized by
the following: the set {a1, a2, . . . , an} generates a numerical semigroup if and
only if the greatest common divisor of the elements a1, a2, . . . , an is 1. For the
background on this subject, a very good reference is [9].
In [3] it is provided a straightforward generalization of numerical semigroups
in N for submonoids of Nd: a monoid S ⊆ Nd is called a generalized numerical
semigroup (GNS) if H(S) = Nd \ S, the set of holes of S, is a finite set. Also
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in this case the cardinality of Nd \S is called the genus of S. In [3] the tree of
generalized numerical semigroups is efficiently calculated up to a given genus
and asymptotic properties of the number of generalized numerical semigroups
of a given genus are discussed. In this paper we want to extend some ideas and
results for classical numerical semigroups to generalized numerical semigroups.
We study basic properties of a GNS in order to characterize its minimal sys-
tem of generators. More precisely, in Section 2 we prove first that every GNS
in Nd has a unique minimal system of generators. Then we investigate under
which conditions a finite set A ⊆ Nd generates a GNS. In Section 3, by using a
connection between submonoids of Nd and power series expansions of rational
functions, we deduce an algorithm to compute the set of holes of a GNS, if a
finite set of generators of S is given.

2 Minimal generators

Throughout the paper we denote by e1, e2, . . . , ed the standard basis vectors
in Rd (that is, for i = 1, . . . , d, ei is the vector whose i-th component is 1 and
the other components are zero). Furthermore, if A ⊆ Nd, we denote 〈A〉 =
{λ1a1 + · · ·+λnan | λ1, . . . , λn ∈ N,a1, . . . ,an ∈ A}, that is the submonoid of
Nd generated by the set A. Moreover if t ∈ Nd, its i-th component is denoted
by t(i).

Lemma 2.1. [9, Lemma 2.3] Let S be a submonoid of Nd. Then S∗\(S∗+S∗)
is a system of generators for S. Moreover, every system of generators of S
contains S∗ \ (S∗ + S∗).

Lemma 2.2. Let S be a GNS of genus g with H(S) = {h1,h2, . . . ,hg−1,h}.
Let h be a maximal element in H(S) with respect to the natural partial order
in Nd. Then S′ = S ∪{h} is a GNS, in particular H(S′) = {h1,h2, . . . ,hg−1}
and S′ has genus g − 1.

Proof. Let S′ = 〈S∪{h}〉. S′ is a GNS since S ⊆ S′ = 〈S∪{h}〉, in particular
H(S) ) H(S′). Let us prove that S′ has genus g − 1. We suppose there
exists hj ∈ H(S), j ∈ {1, . . . , g − 1}, such that hj ∈ S′ = 〈S ∪ {h}〉. Then
hj =

∑
k µkgk + λh, with gk ∈ S. If λ = 0 then hj ∈ S, contradiction. If

λ 6= 0 then hj ≥ h against the maximality of h in H(S). So hj /∈ S′ for
j ∈ {1, . . . , g − 1}, hence H(S′) = {h1,h2, . . . ,hg−1}.

Proposition 2.3. Every GNS admits a finite system of generators.

Proof. Let S ⊆ Nd be a GNS. We prove the statement by induction on the
genus g of S. If g = 0 then S = Nd, that is generated by the standard basis
vectors {e1, e2, . . . , ed}. Let S ⊆ Nd be a GNS of genus g + 1 and let h be a
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maximal element in H(S) with respect to the natural partial order in Nd. By
Lemma 2.2 S′ = S ∪ {h} is a GNS in Nd of genus g, that is finitely generated
by induction hypothesis. Hence let G(S′) be a finite system of generators for
S′. We have h ∈ G(S′) because h cannot belong to S. So G(S′) ⊂ S∪{h} and
we can denote G(S′) = {g1,g2, . . . ,gs,h} with gi ∈ S for every i = 1, 2, . . . , s.
Let B = {g1, . . . ,gs,h + g1,h + g2, . . . ,h + gs, 2h, 3h}. By the maximality
of h in H(S) we have B ⊂ S and furthermore it is easy to prove that B is a
system of generators for S. Hence S is finitely generated.

Corollary 2.4. Every GNS admits a unique finite system of minimal gener-
ators.

Proof. By Lemma 2.1 every GNS admits a unique system of minimal genera-
tors, that is S∗ \ (S∗ + S∗), which is contained in every system of generators.
By Proposition 2.3 such a system of generators is finite.

Definition 2.5. Let t ∈ Nd, we define the set π(t) = {n ∈ Nd | n ≤ t} where
≤ is the natural partial order defined in Nd.

Remark 2.6. Notice that for every t ∈ Nd the set π(t) is finite and it repre-
sents the set of integer points of the hyper-rectangle whose vertices are t, its
projections on the coordinate planes, the origin of axes, and the points in the
coordinate axes (t(1), 0, . . . , 0), (0, t(2), 0, . . . , 0), . . . , (0, . . . , 0, t(d)). If s /∈ π(t)
then s has at least one component larger than the respective of t.

Lemma 2.7. Let S ⊆ Nd be a monoid. Then S is a GNS if and only if there
exists t ∈ Nd such that for all elements s /∈ π(t) then s ∈ S.

Proof. Let S be a GNS in Nd whose hole set is H(S) = {h1,h2, . . . ,hg}. Let
t(i) ∈ N be the largest number appearing in the i-th coordinate of elements

in H(S) for i ∈ {1, . . . , d}, in other words t(i) = max{h(i)1 , h
(i)
2 , . . . , h

(i)
g }. It is

easy to see that t = (t(1), t(2), . . . , t(d)) ∈ Nd fulfils the thesis.
Conversely, let t ∈ Nd be an element such that for every s /∈ π(t) it is s ∈ S.
Therefore if h ∈ Nd \ S then h ∈ π(t), that is (Nd \ S) ⊆ π(t) and since π(t)
is a finite set then S is a GNS.

For the proof of the next theorem, that is the main result of this paper, we
consider that the Frobenius Number of N (the trivial numerical semigroup) is
0, although it is usually defined to be −1 in the existing literature.

Theorem 2.8. Let d ≥ 2 and let S = 〈A〉 be the monoid generated by a set
A ⊆ Nd. Then S is a GNS if and only if the set A fulfils each one of the
following conditions:
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1. For all j = 1, 2, . . . , d there exist a
(j)
1 ej , a

(j)
2 ej , . . . , a

(j)
rj ej ∈ A, rj ∈

N \ {0}, such that GCD(a
(j)
1 , a

(j)
2 , . . . , a

(j)
rj ) = 1 (that is, the elements

a
(j)
i , 1 ≤ i ≤ rj, generate a numerical semigroup).

2. For every i, k, 1 ≤ i < k ≤ d there exist xik,xki ∈ A such that xik =

ei + n
(k)
i ek and xki = ek + n

(i)
k ei with n

(k)
i , n

(i)
k ∈ N.

Proof. ⇒) If A does not satisfy the first condition for some j then there exist
infinite elements aej , a ∈ N \ {0}, which do not belong to S. If A does not
satisfy the second condition for some i 6= j, then there are infinite elements
ei + nek with n ∈ N \ {0} which do not belongs to S.
⇐) For every j = 1, 2, . . . , d, let Sj be the numerical semigroup generated by

{a(j)1 , a
(j)
2 , . . . , a

(j)
rj }. We denote with F (j) the Frobenius number of Sj . It is

easy to verify that for all n ∈ N \ {0}, the element (F (j) + n)ej ∈ Nd belong
to S. Let v = (v(1), v(2), . . . , v(d)) ∈ Nd be the element defined by

v(j) =

d∑
i=1
i 6=j

F (i)n
(j)
i + F (j)

for any j = 1, 2, . . . , d. Let us prove that x ∈ S for all x /∈ π(v) so, by
Lemma 2.7, S is a GNS.
Let x = (x(1), x(2), . . . , x(d)) ∈ Nd such that x(j) > v(j) for some j ∈ {1, . . . , d}.
Then there exists mj ∈ N \ {0} such that x(j) = v(j) +mj .
If k1, k2, . . . , kr ∈ {1, 2, . . . , d} \ {j} are such that x(ki) ≤ F (ki) for every

i ∈ {1, 2, . . . , r}, so x(ki)n
(j)
ki
≤ F (ki)n

(j)
ki

for every i = 1, . . . , r, then for every

i there exists pi ∈ N such that F (ki)n
(j)
ki

= x(ki)n
(j)
ki

+ pi.
Moreover let h1, . . . , hs ∈ {1, . . . , d} \ {j} be the components of x such that
x(hi) > F (hi) for every i ∈ {1, . . . , s}, hence x(hi)ehi

∈ S, for all i.
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Then we consider the following equalities:

x =
∑d

i=1 x
(i)ei =

∑r
i=1 x

(ki)eki +
∑s

i=1 x
(hi)ehi + x(j)ej

=
∑r

i=1 x
(ki)eki +

∑s
i=1 x

(hi)ehi +
(∑d

i 6=j F
(i)n

(j)
i + F (j) +mj

)
ej

=
∑r

i=1

(
x(ki)eki

+ F (ki)n
(j)
ki

ej

)
+
∑s

i=1 x
(hi)ehi

+(∑s
i=1 F

(hi)n
(j)
hi

+ F (j) +mj
)

ej

=
∑r

i=1

(
x(ki)eki

+ (x(ki)n
(j)
ki

+ pi)ej

)
+
∑s

i=1 x
(hi)ehi

+(∑s
i=1 F

(hi)n
(j)
hi

+ F (j) +mj

)
ej

=
∑r

i=1 x
(ki)

(
eki

+ n
(j)
ki

ej

)
+∑s

i=1 x
(hi)ehi

+
(∑s

i=1 F
(hi)n

(j)
hi

+
∑r

i=1 pi + F (j) +mj

)
ej .

Therefore x is a sum of elements in S (note that the first sum is a linear
combination of elements in A, whose coefficients are non negative integers).
So S is a GNS.

Corollary 2.9. Let S ⊆ Nd be a GNS and let A be a finite system of generators
of S. With the notation of the previous theorem for the elements in A, let

Sj be the numerical semigroup generated by {a(j)1 , a
(j)
2 , . . . , a

(j)
rj } and F (j) the

Frobenius number of Sj, for j = 1, . . . , d. Let v = (v(1), v(2), . . . , v(d)) ∈ Nd

defined by:

v(j) =

d∑
i 6=j

F (i)n
(j)
i + F (j).

Then H(S) ⊆ π(v).

Proof. It easily follows from the proof of Theorem 2.8.

Example 2.10. Let S ⊆ N4 be the GNS generated byA = {(1, 0, 0, 0), (1, 0, 0, 1),
(0, 1, 0, 0), (0, 1, 0, 1), (0, 0, 1, 0), (0, 0, 2, 1), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 5)}.
Actually S is a GNS and its hole set isH(S) = {(0, 0, 0, 1), (0, 0, 0, 3), (0, 0, 1, 1)}.
Let us verify that the conditions of Theorem 2.8 are satisfied. The generators
described in condition 1) of the previous theorem are {(1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 2), (0, 0, 0, 5)}. About the condition 2) we have to
verify that A contains at least one element of the following shapes:
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(n
(1)
2 , 1, 0, 0), (1, n

(2)
1 , 0, 0), (1, 0, n

(3)
1 , 0), (n

(1)
3 , 0, 1, 0),

(1, 0, 0, n
(4)
1 ), (n

(1)
4 , 0, 0, 1), (0, 1, n

(3)
2 , 0), (0, n

(2)
3 , 1, 0),

(0, 1, 0, n
(4)
2 ), (0, n

(2)
4 , 0, 1), (0, 0, 1, n

(4)
3 ), (0, 0, n

(3)
4 , 1).

The generators described in condition 2) of the previous theorem are {(1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 2, 1)}. Observe that the setA′ =
A \ {(0, 0, 1, 3)} is a set of generators of a GNS S′, different from S, with a
greater number of holes.

Example 2.11. Let S ⊆ N2 be the GNS whose hole set isH(S) = {(1, 0), (2, 0),
(2, 1)}. The set of minimal generators of S is {(0, 1), (1, 1), (3, 0), (4, 0), (5, 0)}.
We can identify F (1) = 2, F (2) = 0, n

(1)
2 = 0, n

(2)
1 = 1 so v = (F (2)n

(1)
2 +

F (1), F (1)n
(2)
1 + F (2)) = (2, 2). In Figure 1 the point v is marked in red, the

couples of nonnegative integers in the red area represent the elements in π(v).

y

x1

1

2

2

3

3

4

4

O

Figure 1:

The holes of S are marked in black and we can see that they are all in the
red area, that is π(v). Moreover all the points overside the red area are in S.
Indeed v′ = (2, 1) satisfies Lemma 2.7 too and |π(v′)| < |π(v)|. Anyway this
fact does not always occur, as we will see in the next example.

Example 2.12. Let S ⊆ N2 be the monoid generated byG(S) = {(2, 0), (0, 2),
(3, 0), (0, 3), (1, 4), (4, 1)}.
By Theorem 2.8 S is a GNS. Actually the hole set of S is H(S) = {(0, 1), (1, 0),
(1, 1), (1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1)}. We have F (1) = 1, F (2) = 1,
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n
(2)
1 = 4, n

(1)
2 = 4, so we consider v = (F (2)n

(1)
2 +F (1), F (1)n

(2)
1 +F (2)) = (5, 5).

The set H(S) is contained in π(v):
In this case we can argue that it does not exist an element w ∈ N2 such

that π(w) contains every hole of S and |π(w)| < |π(v)|.

Remark 2.13. Let S = 〈A〉 be a monoid generated by A ⊆ Nd. For every
j = 1, 2, . . . , n, we denote with Aj ⊆ Nd−1 the set of the elements in Nd−1,
obtained from the elements in A removing the j-th component. Then the
condition 2) of Theorem 2.8 is equivalent to the following statement: for every
j = 1, 2, . . . , d, 〈Aj〉 = Nd−1.

3 Linear combinations in Nd with coefficients in N

Let S ⊆ Nd be a finitely generated monoid and {a1,a2, . . . ,an} be a system of
generators for S. We denote by M the d× n matrix whose i-th column is the
vector ai ∈ Nd for i = 1, . . . , n. It is easy to see that an element b ∈ S if and
only if the system Mx = b admits solutions in Nn. In fact this statement is
equivalent to say that b is a linear combination of {a1,a2, . . . ,an} ⊆ Nd with
nonnegative integer coefficients.

Definition 3.1. Let A ⊆ Nd be a finite set. We define the polynomial:

FA =
∑
v∈A

xv,

where xv = xv
(1)

1 xv
(2)

2 · · ·xv(d)

d is the monomial in K[X1, . . . , Xd] associated to
v = (v(1), v(2), . . . , v(d)). We consider the power series expansion of 1/(1−FA)
the following formal series:

P (FA) =

∞∑
k=0

(FA)k.

The following lemma ([5, Lemma 2.2] for d = 1) is obtained by applying
Leibnitz’s rule:

(a1 + a2 + · · ·+ am)n =
∑

h1+h2+···+hm=n

n!

h1!h2! . . . hm!
ah1
1 ah2

2 · · · ahm
m .

Lemma 3.2. Let A = {a1,a2, . . . ,an} ⊆ Nd and b ∈ Nd. Then b is a linear
combination of a1,a2, . . . ,an with nonnegative integer coefficients if and only
if the coefficient of xb in P (FA) is nonzero.
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Proof. By Leibnitz’s rule we obtain:

(FA)t = (x
a
(1)
1

1 x
a
(2)
1

2 · · ·xa
(d)
1

d + x
a
(1)
2

1 x
a
(2)
2

2 · · ·xa
(d)
2

d + · · ·+ x
a(1)
n

1 x
a(2)
n

2 · · ·xa
(d)
n

d )t =

=
∑

K·xa
(1)
1 h1+a

(1)
2 h2+···a(1)

n hn

1 ·xa
(2)
1 h1+a

(2)
2 h2+···a(2)

n hn

2 ·· · ··xa
(d)
1 h1+a

(d)
2 h2+···a(d)

n hn

d ,

where the sum is extended to h1, . . . , hn ∈ N with h1 + · · ·+ hn = t and K is
a nonzero coefficient.

If b =
∑n

i=1 λiai, set t =
∑n

i=1 λi, then xb is a monomial in (FA)t. Con-
versely, if xb has nonzero coefficient in P (FA) then

xb = x
a
(1)
1 h1+a

(1)
2 h2+···a(1)

n hn

1 · xa
(2)
1 h1+a

(2)
2 h2+···a(2)

n hn

2 · · · · · xa
(d)
1 h1+a

(d)
2 h2+···a(d)

n hn

d

with hi ∈ N for i = 1, . . . , n that is b =
∑n

i=1 hiai.

Definition 3.3. Let A = {a1,a2, . . . ,an} ⊆ Nd with ai = (a
(1)
i , a

(2)
i , . . . , a

(d)
i )

for i = 1, 2, . . . , n, and let b ∈ Nd.

Let t = min{
∑d

j=1 a
(j)
i | i = 1, 2, . . . , n}. We define the positive integer

Nb :=

⌊∑d
j=1 b

(j)

t

⌋
.

Proposition 3.4. Let A = {a1,a2, . . . ,an} ⊆ Nd and b ∈ Nd. Then b ∈ 〈A〉
if and only if the coefficient of xb is nonzero in the polynomial:

F (x1, x2, . . . , xd) =

Nb∑
k=0

(FA)k.

Proof. By lemma 3.2 it is enough to show that the coefficient of xb is zero in
F (x1, . . . , xd) if and only if it is zero also in P (FA), that is

∑∞
k=0(FA)k.

We suppose that the coefficient of xb is nonzero in P (FA). Then there exists
r ∈ N such that xb is a monomial in (FA)r. By Leibnitz’s rule we obtain:

(FA)r = (x
a
(1)
1

1 x
a
(2)
1

2 · · ·xa
(d)
1

d + x
a
(1)
2

1 x
a
(2)
2

2 · · ·xa
(d)
2

d + · · ·+ x
a(1)
n

1 x
a(2)
n

2 · · ·xa
(d)
n

d )r

=
∑
h

K·xa
(1)
1 h1+a

(1)
2 h2+···a(1)

n hn

1 ·xa
(2)
1 h1+a

(2)
2 h2+···a(2)

n hn

2 ·· · ··xa
(d)
1 h1+a

(d)
2 h2+···a(d)

n hn

d ,
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where h = (h1, . . . , hn) with h1 +h2 + · · ·+hn = r and K is the correspondent
coefficient, but we do not need its exact value.

If xb
(1)

1 xb
(2)

2 . . . xb
(d)

d appears in the sum, then there exist h1, h2, . . . , hn with
h1 + h2 + · · ·+ hn = r, such that the following equalities are satisfied:

a
(1)
1 h1 + a

(1)
2 h2 + · · · a(1)n hn = b(1)

a
(2)
1 h1 + a

(2)
2 h2 + · · · a(2)n hn = b(2)

...

a
(d)
1 h1 + a

(d)
2 h2 + · · · a(d)n hn = b(d).

We sum the righ-hand side and the left-hand side of all equalities, obtaining
that:

r = h1 + h2 + · · ·+ hn ≤

≤ (a
(1)
1 + a

(2)
1 + · · ·+ a

(d)
1 )h1 + (a

(1)
2 + a

(2)
2 + · · ·+ a

(d)
2 )h2 + · · ·+

+ (a(1)n + a(2)n + · · ·+ a(d)n )hn = b(1) + b(2) + · · ·+ b(d).

Eventually, if t = min{
∑d

j=1 a
(j)
i | i = 1, 2, . . . , n} then

∑d
j=1 a

(j)
i

t ≥ 1 for
i = 1, 2, . . . , d . So we can divide the right-hand side of inequality by t and we
obtain:

r = h1 + h2 + · · ·+ hn ≤

≤
∑d

j=1 a
(j)
1

t
h1 +

∑d
j=1 a

(j)
2

t
h2 + · · ·+

∑d
j=1 a

(j)
n

t
hn =

b(1) + b(2) + · · ·+ b(d)

t

It follows that r ≤ Nb. So, if the coefficient of xb in P (FA) is nonzero then
the greatest power in which it is obtained is at last Nb, for greater powers we
are sure that monomial does not appear.

An application of the previous proposition is the following criterion for the
existence of N-solutions in a linear system with nonnegative integer coefficients.

Corollary 3.5. Let M be a d×n matrix with entries in N whose columns are
the vectors of the set A = {a1,a2, . . . ,an} and let b ∈ Nd. Then the linear
system Mx = b admits solutions x ∈ Nn if and only if the coefficient of xb is
nonzero in the polynomial:

F (x1, x2, . . . , xd) =

Nb∑
k=0

(FA)k.
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The previous arguments suggest the following results.

Corollary 3.6. Let S ⊆ Nd be a GNS, A = {a1,a2, . . . ,an} be a finite system
of generators for S and v ∈ Nd. Then v ∈ S if and only if the coefficient of
xv is nonzero in the polynomial:

F (x1, x2, . . . , xd) =

Nv∑
k=0

(FA)k.

If S is a GNS and a finite system of generators for S is known, then Corol-
lary 3.6 provides a way to establish whether an element v ∈ S. Furthermore
it can be done with a finite computation, that is the building of a polynomial.

Remark 3.7. Recall that if S ⊆ Nd is a GNS and A a finite system of
generators for S, by Theorem 2.8 A satisfies the following conditions:

1. For all j = 1, 2, . . . , d, there exist a
(j)
1 ej , a

(j)
2 ej , . . . , a

(j)
nj ej ∈ A such that

GCD(a
(j)
1 , a

(j)
2 , . . . , a

(j)
nj ) = 1

2. For every i, k ∈ {1, 2, . . . , d} with i < k there exist x,y ∈ A such that

x = ei + n
(k)
i ek and y = ek + n

(i)
k ei with n

(k)
i , n

(i)
k ∈ N.

For every j = 1, 2, . . . , d, let Sj be the numerical semigroup generated by

{a(j)1 , a
(j)
2 , . . . , a

(j)
nj }. We denote by F (j) the Frobenius number of Sj . Let

v = (v(1), v(2), . . . , v(d)) ∈ Nd be the element defined by

v(j) =

d∑
i 6=j

F (i)n
(j)
i + F (j).

It is proved that H(S) ⊆ π(v) (Corollary 2.9), and π(v) is a finite set.

We conclude giving a simple algorithm to compute the set of holes of S,
that is H(S), if a finite system of generators for S is known.

Algorithm.

Let S ⊆ Nd be a GNS and A = {a1,a2, . . . ,an} be a finite system of
generators of S. To compute H(S) we have to do the following steps:

1. Compute the element v of the Remark 3.7.

2. For all x ∈ π(v) we verify: if x is not a N-linear combination of elements
in A then x ∈ H(S). This check can be done by Corollary 3.6.

At the end of the second step the set H(S) is computed.
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Universitá di Messina,
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e
Scienze della Terra,
Viale Ferdinando Stagno D’Alcontres 31,
98166 Messina, Italy
Email: carmelo.cisto@unime.it

Gioia FAILLA,
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